6,445 research outputs found

    Two-Dimensional Conformal Models of Space-Time and Their Compactification

    Get PDF
    We study geometry of two-dimensional models of conformal space-time based on the group of Moebius transformation. The natural geometric invariants, called cycles, are used to linearise Moebius action. Conformal completion of the space-time is achieved through an addition of a zero-radius cycle at infinity. We pay an attention to the natural condition of non-reversibility of time arrow in order to get a correct compactification in the hyperbolic case.Comment: 8 pages,AMS-LaTeX, 18 PS figures; v2--small corrections; v3--add two coments on notations and multidimensional generalisation

    Auctions with Severely Bounded Communication

    Full text link
    We study auctions with severe bounds on the communication allowed: each bidder may only transmit t bits of information to the auctioneer. We consider both welfare- and profit-maximizing auctions under this communication restriction. For both measures, we determine the optimal auction and show that the loss incurred relative to unconstrained auctions is mild. We prove non-surprising properties of these kinds of auctions, e.g., that in optimal mechanisms bidders simply report the interval in which their valuation lies in, as well as some surprising properties, e.g., that asymmetric auctions are better than symmetric ones and that multi-round auctions reduce the communication complexity only by a linear factor

    Superselection Structure of Massive Quantum Field Theories in 1+1 Dimensions

    Get PDF
    We show that a large class of massive quantum field theories in 1+1 dimensions, characterized by Haag duality and the split property for wedges, does not admit locally generated superselection sectors in the sense of Doplicher, Haag and Roberts. Thereby the extension of DHR theory to 1+1 dimensions due to Fredenhagen, Rehren and Schroer is vacuous for such theories. Even charged representations which are localizable only in wedge regions are ruled out. Furthermore, Haag duality holds in all locally normal representations. These results are applied to the theory of soliton sectors. Furthermore, the extension of localized representations of a non-Haag dual net to the dual net is reconsidered. It must be emphasized that these statements do not apply to massless theories since they do not satisfy the above split property. In particular, it is known that positive energy representations of conformally invariant theories are DHR representations.Comment: latex2e, 21 pages. Final version, to appear in Rev. Math. Phys. Some improvements of the presentation, but no essential change

    Arctic Cloud Radiative Forcing in Contemporary Atmospheric Reanalyses

    Get PDF
    Arctic clouds play an important role in modifying the surface energy balance. In the Arctic, clouds are thought to influence the underlying sea ice cover through changing downwelling longwave radiative fluxes to the surface and through the selective reflection of the shortwave flux in summer. Atmospheric reanalyses are generally thought to have a poor representation of cloud processes at high latitudes, although the representation of trends over the perennial Arctic sea ice pack is less well known. Here, atmospheric energy fluxes are examined at the top of the atmosphere from contemporary reanalyses in comparison to satellite measurements from the CERES-EBAF version 4.1 product. The principal reanalyses examined are the NASA MERRA-2, the ECMWF ERA5 and ERA-Interim, the JRA-55, and the regional Arctic System Reanalysis version 2. In agreement with previous observation-based studies, changes with time in the shortwave cloud radiative forcing in reanalyses are found to be negligible despite strong trends in the absorbed shortwave. Over the full satellite period, there is large disagreement in the seasonality of longwave cloud forcing trends. These trends are reduced during the CERES-EBAF observing period (2003-present). An examination of these trends with respect to sea ice cover changes in each of the reanalyses is conducted

    Testing the Hubble Law with the IRAS 1.2 Jy Redshift Survey

    Get PDF
    We test and reject the claim of Segal et al. (1993) that the correlation of redshifts and flux densities in a complete sample of IRAS galaxies favors a quadratic redshift-distance relation over the linear Hubble law. This is done, in effect, by treating the entire galaxy luminosity function as derived from the 60 micron 1.2 Jy IRAS redshift survey of Fisher et al. (1995) as a distance indicator; equivalently, we compare the flux density distribution of galaxies as a function of redshift with predictions under different redshift-distance cosmologies, under the assumption of a universal luminosity function. This method does not assume a uniform distribution of galaxies in space. We find that this test has rather weak discriminatory power, as argued by Petrosian (1993), and the differences between models are not as stark as one might expect a priori. Even so, we find that the Hubble law is indeed more strongly supported by the analysis than is the quadratic redshift-distance relation. We identify a bias in the the Segal et al. determination of the luminosity function, which could lead one to mistakenly favor the quadratic redshift-distance law. We also present several complementary analyses of the density field of the sample; the galaxy density field is found to be close to homogeneous on large scales if the Hubble law is assumed, while this is not the case with the quadratic redshift-distance relation.Comment: 27 pages Latex (w/figures), ApJ, in press. Uses AAS macros, postscript also available at http://www.astro.princeton.edu/~library/preprints/pop682.ps.g

    Dynamics of coherences in the interacting double-dot Aharonov-Bohm interferometer: Exact numerical simulations

    Full text link
    We study the real time dynamics of electron coherence in a double quantum dot two-terminal Aharonov-Bohm geometry, taking into account repulsion effects between the dots' electrons. The system is simulated by extending a numerically exact path integral method, suitable for treating transport and dissipation in biased impurity models [Phys. Rev. B 82, 205323 (2010)]. Numerical simulations at finite interaction strength are supported by master equation calculations in two other limits: assuming non-interacting electrons, and working in the Coulomb blockade regime. Focusing on the intrinsic coherence dynamics between the double-dot states, we find that its temporal characteristics are preserved under weak-to-intermediate inter-dot Coulomb interaction. In contrast, in the Coulomb blockade limit, a master equation calculation predicts coherence dynamics and a steady-state value which notably deviate from the finite interaction case
    corecore